Dextromethorphan
Dextromethorphan (DXM or DM) is a medication most often used as a cough suppressant in over-the-counter cold and cough medicines. It is sold in syrup, tablet, spray, and lozenge forms.
The primary use of dextromethorphan is as a cough suppressant, for the temporary relief of cough caused by minor throat and bronchial irritation (such as commonly accompanies the flu and common cold), as well as those resulting from inhaled particle irritants.[8] However, controlled studies have found the symptomatic effectiveness of dextromethorphan similar to placebo.[9]
It’s in clinical trials for major depressive disorder in combination with bupropion, with fast tracked designation by the FDA.[12] It showed positive results on the phase 2 and phase 3 clinical trials.[13][14]
Side effects of dextromethorphan at normal therapeutic doses can include:[2][8][15]
- body rash/itching (see below)
- nausea
- vomiting
- drowsiness
- dizziness
- constipation
- diarrhea
- sedation
- confusion
- nervousness
- closed-eye hallucination
A rare side effect is respiratory depression.[8]
Dextromethorphan has been found to possess the following actions (<1 μM) using rat tissues:[24][30]
- Uncompetitive antagonist of the NMDA receptor via the MK-801/PCP site[30]
- SERT and NET blocker (cf. serotonin–norepinephrine reuptake inhibitor)
- Sigma σ1 receptor agonist
- Negative allosteric modulator of nicotinic acetylcholine receptors
- Ligand of the serotonin 5-HT1B/1D, histamine H1, α2-adrenergic, and muscarinic acetylcholine receptors
Rather than acting as a direct NMDA receptor antagonist itself, dextromethorphan acts as a prodrug of its much more potent metabolite dextrorphan, and this is the actual mediator of its dissociative effects.[31] What role, if any, (+)-3-methoxymorphinan, dextromethorphan’s other major metabolite, plays in its effects is not entirely clear.[32
Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood–brain barrier.
At therapeutic doses, dextromethorphan acts centrally (meaning that it acts on the brain) as opposed to locally (on the respiratory tract). It elevates the threshold for coughing, without inhibiting ciliary activity. Dextromethorphan is rapidly absorbed from the gastrointestinal tract and converted into the active metabolite dextrorphan in the liver by the cytochrome P450 enzyme CYP2D6. The average dose necessary for effective antitussive therapy is between 10 and 45 mg, depending on the individual. The International Society for the Study of Cough recommends “an adequate first dose of medication is 60 mg in the adult and repeat dosing should be infrequent rather than the qds recommended.”[33]
DXM has an elimination half-life of approximately 4 hours in individuals with an extensive metabolizer phenotype; this is increased to approximately 13 hours when DXM is given in combination with quinidine.[26] The duration of action after oral administration is about three to eight hours for dextromethorphan hydrobromide, and 10 to 12 hours for dextromethorphan polistirex. Around one in 10 of the Caucasian population has little or no CYP2D6 enzyme activity, leading to long-lived high drug levels.
Adverse effects of dextromethorphan in overdose at doses 3 to 10 times the recommended therapeutic dose:[19]
- mild nausea
- restlessness
- insomnia
- talking fast
- dilated pupils
- glassy eyes
References
- Kukanich B, Papich MG (October 2004). “Plasma profile and pharmacokinetics of dextromethorphan after intravenous and oral administration in healthy dogs”. Journal of Veterinary Pharmacology and Therapeutics. 27 (5): 337–41. doi:10.1111/j.1365-2885.2004.00608.x. PMID 15500572.
- ^ Jump up to:a b c “Balminil DM, Benylin DM (dextromethorphan) dosing, indications, interactions, adverse effects, and more”. Medscape Reference. WebMD. Retrieved 15 April 2014.
- ^ “Reference Tables: Description and Solubility – D”. Archived from the original on 2017-07-04. Retrieved 2011-05-06.
- ^ Schwartz AR, Pizon AF, Brooks DE (September 2008). “Dextromethorphan-induced serotonin syndrome”. Clinical Toxicology. 46 (8): 771–3. doi:10.1080/15563650701668625. PMID 19238739.
- ^ Shin EJ, Nah SY, Chae JS, Bing G, Shin SW, Yen TP, et al. (May 2007). “Dextromethorphan attenuates trimethyltin-induced neurotoxicity via sigma1 receptor activation in rats”. Neurochemistry International. 50 (6): 791–9. doi:10.1016/j.neuint.2007.01.008. PMID 17386960.
- ^ Shin EJ, Nah SY, Kim WK, Ko KH, Jhoo WK, Lim YK, et al. (April 2005). “The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via sigma1 receptor activation: comparison with the effects of dextromethorphan”. British Journal of Pharmacology. 144 (7): 908–18. doi:10.1038/sj.bjp.0705998. PMC 1576070. PMID 15723099.
- ^ Fischer, Jnos; Ganellin, C. Robin (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 527. ISBN 9783527607495.
- ^ Jump up to:a b c Rossi, S, ed. (2013). Australian Medicines Handbook. Adelaide: The Australian Medicines Handbook Unit Trust. ISBN 978-0-9805790-9-3.[page needed]
- ^ Van Amburgh JA. “Do Cough Remedies Work?”. Medscape. Retrieved 10 April 2016.
- ^ Jump up to:a b Nguyen L, Thomas KL, Lucke-Wold BP, Cavendish JZ, Crowe MS, Matsumoto RR (March 2016). “Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders”. Pharmacology & Therapeutics. 159: 1–22. doi:10.1016/j.pharmthera.2016.01.016. PMID 26826604.
- ^ Malek A, Amiri S, Habibi Asl B (2013). “The therapeutic effect of adding dextromethorphan to clonidine for reducing symptoms of opioid withdrawal: a randomized clinical trial”. ISRN Psychiatry. 2013: 546030. doi:10.1155/2013/546030. PMC 3706070. PMID 23864983.
- ^ Inc, Axsome Therapeutics (2017-02-14). “Axsome Therapeutics Receives FDA Fast Track Designation for AXS-05 for Treatment Resistant Depression”. GlobeNewswire News Room. Retrieved 2019-12-22.
- ^ “Dextromethorphan/bupropion combo is remarkably fast-acting antidepressant”. www.mdedge.com. Retrieved 2019-12-22.
- ^ “Axsome Therapeutics Announces AXS-05 Achieves Primary Endpoint in GEMINI Phase 3 Trial in Major Depressive Disorder”. Axsome Therapeutics, Inc. Retrieved 2019-12-22.
- ^ Jump up to:a b c d “Dextromethorphan”. National Highway Traffic Safety Administration (NHTSA). Archived from the original on 2008-08-01.
- ^ Olney JW, Labruyere J, Price MT (June 1989). “Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs”. Science. 244 (4910): 1360–2. Bibcode:1989Sci…244.1360O. doi:10.1126/science.2660263. PMID 2660263.
- ^ Carliss RD, Radovsky A, Chengelis CP, O’Neill TP, Shuey DL (July 2007). “Oral administration of dextromethorphan does not produce neuronal vacuolation in the rat brain”. Neurotoxicology. 28 (4): 813–8. doi:10.1016/j.neuro.2007.03.009. PMID 17573115.
- ^ WHO Expert Committee on Drug Dependence, Seventeenth Report (PDF). World Health Organization. 1970. p. 24. Retrieved 2008-12-29.
- ^ Jump up to:a b “Teen Drug Abuse: Cough Medicine and DXM (Dextromethorphan)”. webmd. Archived from the original on 2017-11-21.
- ^ Martinak B, Bolis RA, Black JR, Fargason RE, Birur B (September 2017). “Dextromethorphan in Cough Syrup: The Poor Man’s Psychosis”. Psychopharmacology Bulletin. 47 (4): 59–63. PMC 5601090. PMID 28936010.
- ^ Martinak B, Bolis RA, Black JR, Fargason RE, Birur B (September 2017). “Dextromethorphan in Cough Syrup: The Poor Man’s Psychosis”. Psychopharmacology Bulletin. 47 (4): 59–63. PMC 5601090. PMID 28936010.
- ^ “Inhibitors of CYP3A4”. ganfyd.org. Archived from the original on 2017-07-20. Retrieved 23 August 2013.
- ^ Roth, BL; Driscol, J. “PDSP Ki Database”. Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health. Retrieved 14 August 2017.
- ^ Jump up to:a b c d e f g h i j k l m n o p q r s t u Nguyen L, Thomas KL, Lucke-Wold BP, Cavendish JZ, Crowe MS, Matsumoto RR (March 2016). “Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders” (PDF). Pharmacology & Therapeutics. 159: 1–22. doi:10.1016/j.pharmthera.2016.01.016. PMID 26826604.
- ^ Werling LL, Keller A, Frank JG, Nuwayhid SJ (October 2007). “A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder”. Experimental Neurology. 207 (2): 248–57. doi:10.1016/j.expneurol.2007.06.013. PMID 17689532.
- ^ Jump up to:a b Taylor CP, Traynelis SF, Siffert J, Pope LE, Matsumoto RR (August 2016). “Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use”. Pharmacology & Therapeutics. 164: 170–82. doi:10.1016/j.pharmthera.2016.04.010. PMID 27139517.
- ^ Raynor K, Kong H, Mestek A, Bye LS, Tian M, Liu J, et al. (January 1995). “Characterization of the cloned human mu opioid receptor”. The Journal of Pharmacology and Experimental Therapeutics. 272 (1): 423–8. PMID 7815359.
- ^ Lee JH, Shin EJ, Jeong SM, Lee BH, Yoon IS, Lee JH, et al. (June 2007). “Effects of dextrorotatory morphinans on brain Na+ channels expressed in Xenopus oocytes”. European Journal of Pharmacology. 564 (1–3): 7–17. doi:10.1016/j.ejphar.2007.01.088. PMID 17346698.
- ^ Gao XF, Yao JJ, He YL, Hu C, Mei YA (2012). “Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels”. PLOS ONE. 7 (11): e49384. Bibcode:2012PLoSO…749384G. doi:10.1371/journal.pone.0049384. PMC 3489664. PMID 23139844.
- ^ Jump up to:a b Burns JM, Boyer EW (2013). “Antitussives and substance abuse”. Substance Abuse and Rehabilitation. 4: 75–82. doi:10.2147/SAR.S36761. PMC 3931656. PMID 24648790.
- ^ Chou YC, Liao JF, Chang WY, Lin MF, Chen CF (March 1999). “Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan”. Brain Research. 821 (2): 516–9. doi:10.1016/S0006-8993(99)01125-7. PMID 10064839.
- ^ Schmider J, Greenblatt DJ, Fogelman SM, von Moltke LL, Shader RI (April 1997). “Metabolism of dextromethorphan in vitro: involvement of cytochromes P450 2D6 and 3A3/4, with a possible role of 2E1”. Biopharmaceutics & Drug Disposition. 18 (3): 227–40. doi:10.1002/(SICI)1099-081X(199704)18:3<227::AID-BDD18>3.0.CO;2-L. PMID 9113345.
- ^ Jump up to:a b Morice AH. “Cough”. International Society for the Study of Cough. Archived from the original on 2017-05-09.
- ^ Strauch K, Lutz U, Bittner N, Lutz WK (August 2009). “Dose-response relationship for the pharmacokinetic interaction of grapefruit juice with dextromethorphan investigated by human urinary metabolite profiles”. Food and Chemical Toxicology. 47 (8): 1928–35. doi:10.1016/j.fct.2009.05.004. PMID 19445995.
- ^ Jump up to:a b c d Yu A, Haining RL (November 2001). “Comparative contribution to dextromethorphan metabolism by cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both CTP2D6 and CYP3A activities?”. Drug Metabolism and Disposition. 29 (11): 1514–20. PMID 11602530.
- ^ Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA (September 1996). “The influence of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans”. Clinical Pharmacology and Therapeutics. 60 (3): 295–307. doi:10.1016/S0009-9236(96)90056-9. PMID 8841152.
- ^ Woodworth JR, Dennis SR, Moore L, Rotenberg KS (February 1987). “The polymorphic metabolism of dextromethorphan”. Journal of Clinical Pharmacology. 27 (2): 139–43. doi:10.1002/j.1552-4604.1987.tb02174.x. PMID 3680565.
- ^ “Dextromethorphan (PIM 179)”. www.inchem.org. Archived from the original on 2017-03-10. Retrieved 2018-03-24.
- ^ Jump up to:a b c d Morris H, Wallach J (2014). “From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs”. Drug Testing and Analysis. 6 (7–8): 614–32. doi:10.1002/dta.1620. PMID 24678061.
- ^ “Memorandum for the Secretary of Defense” (PDF). Archived (PDF) from the original on 2017-09-16. Retrieved 2013-07-28.
- ^ Jump up to:a b c “Dextromethorphan (DXM)”. Cesar.umd.edu. Archived from the original on 2018-01-06. Retrieved 2013-07-28.
- ^ “Senate Bill No. 514” (PDF). An act to add Sections 11110 and 11111 to the Health and Safety Code, relating to nonprescription drugs. State of California, Legislative Counsel. Archived (PDF) from the original on 2018-03-08.
- ^ http://nasional.news.viva.co.id/news/read/506418-bpom-tetap-batalkan-izin-edar-obat-dekstrometorfan Archived 2015-05-28 at the Wayback Machine[full citation needed]
- ^ “SINDOnews | Berita Daerah Dan Provinsi Di Indonesia”. daerah.sindonews.com (in Indonesian). Retrieved 2017-12-10.[dead link]
- ^ “Pimpinan dan Apoteker Penanggung Jawab” (PDF). Archived from the original(PDF) on 2017-08-10.
- ^ “Badan Pengawas Obat dan Makanan – Republik Indonesia”. www.pom.go.id. Archived from the original on 2017-02-03. Retrieved 2017-12-10.
- ^ “Fake drugs: the global industry putting your life at risk”. Mosaic. 30 October 2018. Retrieved 13 December 2018.
- ^ “Dextromethorphan” (PDF). Drugs and Chemicals of Concern. Drug Enforcement Administration. August 2010. Archived from the original (PDF) on 2012-10-16.
- ^ Giannini AJ (1997). Drugs of abuse (2nd ed.). Los Angeles: Practice Management Information Corp. ISBN 1570660530.[page needed]
- ^ Ackerman, Sarah C.; Hammel, John L.; Brunette, Mary F. (2010-12-20). “Dextromethorphan Abuse and Dependence in Adolescents”. Journal of Dual Diagnosis. 6(3–4): 266–278. doi:10.1080/15504263.2010.537515.