“The Ghost Heart”

Please note that this image might contain sensitive content. Click to unblur.
Sensitive image, click to zoom and unblur

This is a human heart decellularized, leaving only the connective tissue which can be used in artificial organ and tissue regeneration.



Decellularization (also spelt decellularisation in British English) is the process used in biomedical engineering to isolate the extracellular matrix (ECM) of a tissue from its inhabiting cells, leaving an ECM scaffold of the original tissue, which can be used in artificial organ and tissue regeneration. Organ and tissue transplantation treat a variety of medical problems, ranging from end organ failure to cosmetic surgery. One of the greatest limitations to organ transplantation derives from organ rejection caused by antibodies of the transplant recipient reacting to donor antigens on cell surfaces within the donor organ. Because of unfavorable immune responses, transplant patients suffer a lifetime taking immunosuppressing medication.

We're putting some ads to pay for site maintenance. Please let us know if you're seeing something innapropriate.

Stephen F. Badylak pioneered the process of decellularization at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. This process creates a natural biomaterial to act as a scaffold for cell growth, differentiation and tissue development. By recellularizing an ECM scaffold with a patient’s own cells, the adverse immune response is eliminated. Nowadays, commercially available ECM scaffolds are available for a wide variety of tissue engineering. Using peracetic acid to decellularize ECM scaffolds have been found to be false and only disinfects the tissue.

Abstract

Background

Patients with end-stage heart failure must receive treatment to recover cardiac function, and the current primary therapy, heart transplantation, is plagued by the limited supply of donor hearts. Bioengineered artificial hearts generated by seeding of cells on decellularized scaffolds have been suggested as an alternative source for transplantation. This study aimed to develop a tissue-engineered heart with lower immunogenicity and functional similarity to a physiological heart that can be used for heart transplantation.

This article is intended for educational purposes. All credit to the authors.